Using fluorescent dissolved organic matter to trace and distinguish the origin of Arctic surface waters

نویسندگان

  • Rafael Gonçalves-Araujo
  • Mats A. Granskog
  • Astrid Bracher
  • Kumiko Azetsu-Scott
  • Paul A. Dodd
  • Colin A. Stedmon
چکیده

Climate change affects the Arctic with regards to permafrost thaw, sea-ice melt, alterations to the freshwater budget and increased export of terrestrial material to the Arctic Ocean. The Fram and Davis Straits represent the major gateways connecting the Arctic and Atlantic. Oceanographic surveys were performed in the Fram and Davis Straits, and on the east Greenland Shelf (EGS), in late summer 2012/2013. Meteoric (fmw), sea-ice melt, Atlantic and Pacific water fractions were determined and the fluorescence properties of dissolved organic matter (FDOM) were characterized. In Fram Strait and EGS, a robust correlation between visible wavelength fluorescence and fmw was apparent, suggesting it as a reliable tracer of polar waters. However, a pattern was observed which linked the organic matter characteristics to the origin of polar waters. At depth in Davis Strait, visible wavelength FDOM was correlated to apparent oxygen utilization (AOU) and traced deep-water DOM turnover. In surface waters FDOM characteristics could distinguish between surface waters from eastern (Atlantic + modified polar waters) and western (Canada-basin polar waters) Arctic sectors. The findings highlight the potential of designing in situ multi-channel DOM fluorometers to trace the freshwater origins and decipher water mass mixing dynamics in the region without laborious samples analyses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Terrigenous dissolved organic matter in the Arctic Ocean and its transport to surface and deep waters of the North Atlantic

[1] Surface waters of the Arctic Ocean have the highest concentrations of dissolved organic carbon (DOC) and terrigenous dissolved organic matter (DOM) of all ocean basins. Concentrations of dissolved lignin phenols in polar surface waters are 7-fold to 16-fold higher than those in the Atlantic and Pacific oceans, and stable carbon isotopic compositions of DOM are depleted in C by 1–2% relative...

متن کامل

Characteristics of dissolved organic matter in Baltic coastal sea ice: allochthonous or autochthonous origins?

The origin of dissolved organic matter (DOM) within sea ice in coastal waters of the Baltic Sea was investigated using parallel factor (PARAFAC) analysis of DOM fluorescence. Sea ice DOM had distinctly different fluorescence characteristics than that of the underlying humic-rich waters and was dominated by protein-like fluorescence signals. PARAFAC analysis identified five fluorescent component...

متن کامل

Laterally spreading iron, humic-like dissolved organic matter and nutrients in cold, dense subsurface water of the Arctic Ocean

The location and magnitude of oceanic iron sources remain uncertain owing to a scarcity of data, particularly in the Arctic Ocean. The formation of cold, dense water in the subsurface layer of the western Arctic Ocean is a key process in the lateral transport of iron, macronutrients, and other chemical constituents. Here, we present iron, humic-like fluorescent dissolved organic matter, and nut...

متن کامل

Tracing the transport of colored dissolved organic matter in water masses of the Southern Beaufort Sea: relationship with hydrographic characteristics

Light absorption by colored dissolved organic matter (CDOM) [aCDOM(λ)] plays an important role in the heat budget of the Arctic Ocean, contributing to the recent decline in sea ice, as well as in biogeochemical processes. We investigated aCDOM(λ) in the Southern Beaufort Sea where a significant amount of CDOM is delivered by the Mackenzie River. In the surface layer, aCDOM(440) showed a strong ...

متن کامل

Limnol. Oceanogr., 44(8), 1999, 2017–2023

High-latitude rivers supply the Arctic Ocean with a disproportionately large share of global riverine discharge and terrigenous dissolved organic matter (DOM). We used the abundance of lignin, a macromolecule unique to vascular plants, and stable carbon isotope ratios (d13C) to trace the high molecular weight fraction of terrigenous DOM in major water masses of the Arctic Ocean. Lignin oxidatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016